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ABSTRACT 
Metal Powder Bed Fusion (PBF) has been attracting an increasing attention as an emerging metal 
Additive Manufacturing (AM) technology. Despite its distinctive advantages compared to traditional 
subtractive manufacturing such as high design flexibility, short development time, low tooling cost, 
and low production waste, the inconsistent part quality caused by inappropriate product design, non-
optimal process plan and inadequate process control has significantly hindered its wide acceptance in 
the industry. To improve the part quality control in metal PBF process, this paper proposes a novel 
Machine Learning (ML)-enabled approach for developing feedback loops throughout the entire metal 
PBF process. A categorization of metal PBF feedback loops is proposed along with a summary of the 
critical PBF manufacturing data in each process stage. A generic framework of ML-enabled metal PBF 
feedback loops is proposed with detailed explanations and examples. The opportunities and challenges 
of the proposed approach are also discussed. The applications of ML techniques in metal PBF process 
allow efficient and effective decision- makings to be achieved in each PBF process stage, and hence 
have a great potential in reducing the number of experiments needed, thus saving a significant amount of 
time and cost in metal PBF production. 
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1.0 INTRODUCTION 
Metal Additive Manufacturing (AM) refers to the manufacturing process in which metal parts are 
joined or solidified from a feedstock. In recent years, various types of metal AM technologies have 
been developed and some of them have been commercialised and applied in the production of fully 
functional parts. In general, AM technologies can be divided into seven categories, including binder 
jetting, direct energy deposition, material extrusion, material jetting, powder bed fusion (PBF), sheet 
lamination, and vat photopolymerization. The fundamental theory and mechanism of each AM 
technology differ significantly from one another [1-11]. The focus of this study is on the most mature 
and widely applied metal AM technology, i.e. metal PBF.PBF is an AM process that uses a laser or 
electron beam to selectively melt and fuse areas of a layer of powders, after which the powder bed is 
moved downwards, another layer of powders is added and the process repeats until the part is built up 
[12-19]. Widely used metal PBF techniques include Selective Laser Melting (SLM), Electron Beam 
Melting (EBM) and Direct Metal Laser Sintering (DMLS). Though metal PBF is a relatively new 
technology compared to traditional subtractive manufacturing, it has shown distinctive advantages in 
terms of the higher design flexibility, shorter development time, lower tooling cost, and less 
production waste [20-24]. However, despite these advantages, its widespread adoption is significantly 
hindered by the variability in part quality with respect to the dimensional accuracy, surface roughness, 
mechanical and physical properties, porosity, and other defects [25-31]. A typical metal PBF process 
comprises several stages such as product design, process planning, PBF manufacturing, post-
processing (optional), and product quality measurement. The inconsistent part quality can be caused 
by various reasons in different stages such as inappropriate product design, non-optimal process plan 
and inadequate process control [32-39]. Therefore, part quality control remains a major challenge for 
metal PBF. An ideal solution to address this issue is to establish feedback loops (or closed-loop 
manufacturing) throughout the entire metal PBF process, such that the product design, process 
planning and process control can be optimized either on-line or off-line based on process monitoring 
and product quality measurement [40-46]. The development of feedback loops for metal PBF requires 
a collective effort from various PBF-related research areas such as in-situ process monitoring, process 
control and optimization, process simulation and product quality measurement. With the 
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advancements in process monitoring and quality measurement technologies, large amounts and 
various types of manufacturing data become available to be utilized to develop the feedback loops 
[47-53]. However, traditional statistical methods suffer from their poor capability of analysing the 
highly heterogeneous and non-linear data. Recent advancements in Machine Learning (ML) provide 
advanced data analytics tools for processing and analysing the big manufacturing data. Nowadays, ML 
techniques have been increasingly applied in the manufacturing area as they allow to gain insights of 
the big manufacturing data and facilitate the decision-making processes. The advantages of ML have 
shown a great potential in facilitating the development of feedback loops for metal PBF process [54-
61]. This study investigates the opportunities and challenges for developing ML-enabled feedback 
loops for metal PBF process. A literature review on feedback loops and ML applications in PBF is 
provided in Section 2. The categorization of metal PBF feedback loops and the identification of the 
critical data are presented in Section 3. Section 4 introduces the ML-enabled feedback loops for PBF, 
including a generic framework of the ML-enabled feedback loops and some example applications. 
Section 5 discusses the opportunities and challenges for developing the ML-enabled metal PBF 
feedback loops. Section 6 concludes the paper. 
 

2.0 LITERATURE REVIEW 
Development of feedback loops is considered an ultimate goal of a large amount of PBF research, 
though most of the existing research works focus only on a specific part of the feedback loop such as 
in-situ process monitoring or process control. This subsection reviews some representative works that 
are most relevant to the development of PBF feedback loops. Several conceptual PBF feedback loops 
have been proposed. Based on the hierarchy of PBF parameters, Vlasea et al. proposed four types of 
PBF feedback control strategies: 1) pre-processing for predictive control, 2) in-situ defect or fault 
detection and handling, 3) in-situ continuous feedback control, and 4) signature-derived control 
through plant models or simulations. Aiming to develop closed-loop PBF system, Chua et al. 
proposed three approaches based on different stages of the inspection and monitoring system, i.e. 1) 
single layer inspection-based, 2) multi-layer inspection-based, and 3) final product inspection-based 
feedback loops. Upon the analysis of the control cascades of PBF, Renken et al. proposed three types 
of feedback control strategies: 1) in-process (vector) control, 2) in-situ (vector sets) control, and 3) 
in-situ (layer) control [1-17]. Various types of in-situ process monitoring technologies have been utilized 
to support the development of feedback control of PBF. Renken et al. applied an on-axis high-speed 
pyrometer on a PBF machine to detect the real-time radiation intensities at the melting point. This 
signal is used to control the laser power and speed in real time to minimize the temperature 
deviation. Their experimental results showed that closed-loop control could decrease the temperature 
deviation by up to 90%. Mireles et al. implemented an infrared (IR) camera on an EBM machine to 
monitor the in-situ IR thermography of each printed layer [62-71]. Defects detected in the IR 
thermography are used to trigger a re-melting process to correct the defect, such that an in-situ 
correction feedback loop is established. Simulation-based (or model-based) feedback loops have 
been extensively studied. For instance, Wang et al. developed an analytical and control-oriented 
model that simulates the dynamics of melt pool cross-sectional area during laser scanning. The 
simulation results are fed back to the controller which adjusts the laser power to regulate the melt 
pool cross-sectional area during the build process [72-79]. The developed feedback loop reduces 
defects during the build such as keyhole formation and over-melting. Off-line PBF feedback loops 
that aim to optimize the product design or process parameters have also been investigated. Based on 
off-line experimental data and quality measurement results of PBF processes, Brika et al. developed a 
feedback loop that uses a genetic optimization algorithm to optimize the build orientation while 
simultaneously considering mechanical properties, surface roughness, support structure and build 
time and cost [78-83]. Recently, ML techniques have been increasingly applied in metal PBF 
research to facilitate various types of decision-making processes. Based on the melt pool images 
captured by a high-speed camera during the PBF process, Yang et al. developed a deep learning-
based melt pool classification method to predict the melt pool size in real time. They claimed that the 
processing time of the developed Convolutional Neural Network (CNN) is reduced by 90% 
compared to traditional image analysis method [18-24]. To gain insights of how process parameters 
affect the PBF process, Garg et al. proposed a multi-gene genetic programming method to analyse 
the hidden relationships between the bead width and some important process parameters such as 
layer thickness, laser power and scan speed. Scime and Beuth developed a multi-scale CNN that is 
capable of detecting and classifying seven types of powder bed anomalies based on the powder bed 



International Journal of Management System and Applied Science     Volume 17, Issue 11 – 2022 

Copyright © The Author(s). Published by Scientific Academic Network Group. This work is licensed under the Creative Commons Attribution International License (CC BY). 

493	

images taken after recoating. Their experimental results showed a 97% detection and classification 
accuracy, which is higher than traditional image processing methods. To analyse the complex 
relationships between single track morphology and dynamic process signatures, Zhang et al. 
proposed two intelligent classification methods, i.e. CNN and support vector machine (SVM), to 
classify three types of track morphology based on the images of melt pool, plume and spatters 
captured by a high-speed camera [25-37]. It is noted that their classification methods could only 
work off-line due to the high computational power requirement. Ye et al. proposed a novel defect 
detection method for SLM process based on the acoustic signal captured by a microphone in the build 
chamber. A deep belief network (DBN) framework was developed to predict the melted state of the 
SLM process based on the acoustic signal. It is noted that ML has been extensively utilised in metal 
PBF research to solve various types of data analytics problems [38-46]. However, few studies have 
investigated ML-enabled feedback loops for metal PBF from a systematic perspective. Hence, this 
study attempts to bridge this research gap by analysing the types of feedback loops in metal PBF 
process, the critical manufacturing data involved in the feedback loops, and how to apply ML 
techniques to facilitate the development of the feedback loops [47-53].  
 

3.0 RESEARCH METHODOLOGY 
In general, a complete PBF process contains five stages, including product design, process planning, 
PBF manufacturing, post-processing, and product quality measurement. To analyse the types of 
feedback loops, the PBF manufacturing stage needs to be broken into more detailed substages 
considering the process monitoring and control strategies. Since PBF uses a layer-by-layer building 
process, the control parameters can be adjusted either during recoating or during laser/beam 
scanning, while the process monitoring is performed at the same time. Furthermore, since there exist 
various distinctive post-processing technologies (powder removal, heat treatment, machining, etc.), 
the post-processing stage is not considered in the feedback loops for this study. Hence, in this work, 
the PBF process is further divided into six stages: 1) product design, 2) process planning, 3) 
recoating, 4) laser/beam scanning, 5) process monitoring, and 6) product quality measurement. Based 
on these PBF process stages, we categorise the metal PBF feedback loops into four types, including 
1) ex-situ product design optimisation, 2) ex-situ process plan optimisation, 3) in-situ (layer-by-layer) 
feedback control, and 4) in-process feedback control, as shown in Figure 1. The first two feedback 
loops are performed off-line, while the last two are conducted during PBF manufacturing process.  

Fig.	1.	Categorisation	of	metal	PBF	feedback	loops	

Product design is the initial step of PBF process that determines the material, geometry, and other 
requirements of the PBF product such as dimensional tolerances and surface roughness. Commonly, 
the product design cannot be modified in the following manufacturing stages. Hence, product design 
optimisation is always achieved off-line, where product designers compare the final results from the 
product quality measurement (sometimes also from the process monitoring) to find the design flaws 
that cause the product defects, and then perform design optimization to improve the product quality. 
Process planning is a preparatory step before PBF manufacturing that determines support structures, 
build position and orientation, and various process parameters such as laser/beam power, scan speed, 
scan pattern, layer thickness and gas flow rate. In the ex-situ process plan optimisation feedback 
loop, process planners use data analytics tools to find the relationships between the final product 
quality (sometimes also the process signatures from process monitoring) and various process 
parameters to optimise the process plan off-line. Traditionally, process plan optimisation is achieved 
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through the design of experiments or trial and error method. In-situ feedback control is performed 
during the recoating process, i.e. before the printing of the next layer. Since PBF manufacturing 
follows a layer-by-layer process, some layerwise process signatures detected from the process 
monitoring (powder bed image, layerwise temperature distribution, etc.) can only be obtained after 
the layer is finished. Based on the monitored process signatures, some process parameters can be 
adjusted (depend on the control system) to improve the quality of the next layer or correct the defects 
of the previous layer. If fatal errors are detected in process monitoring, the operator can stop the 
process to prevent further damage of the machine components. In-process feedback control is 
performed during the laser/beam scanning, where the real-time process signatures (such as melt pool 
radiation and plume and spatters) are used as the feedback to adjust the laser/beam power, scan speed 
and scan pattern. In-process feedback control is a very challenging task since it requires real-time data 
analytics as well as real-time control of the laser/beam power and scan speed. In addition, it is worth 
mentioning that most commercial PBF machines do not allow operators to adjust the process 
parameters during scanning. Critical data in PBF feedback loops refer to the manufacturing data in 
the entire PBF process that can be adjusted, controlled, monitored, or measured to improve the 
product quality through the proposed four types of feedback loops (Figure 1). Identification of the 
critical data is a prerequisite for developing feedback loops for PBF process. A comprehensive list of 
specific metal PBF data in each product lifecycle stage has been reported in our previous work as a 
metal PBF product data model [22]. In this study, we summarise the critical data that could be 
monitored, controlled, or measured in each stage of the PBF feedback loops as a fishbone diagram 
shown in Figure 2. 

 

Fig. 2. Critical data in metal PBF feedback loops 
 

Figure 2 does not aim to provide an exhaustive list of critical data in metal PBF feedback loops since 
there still exist many PBF parameters that have not been studied. However, it includes the most 
commonly mentioned parameters in existing literatures. Note that process parameters that affect the 
product quality can be divided into two categories, i.e. predefined and controllable. Predefined process 
parameters are the parameters that cannot be modified even in the process planning stage such as the 
powder material properties and some build environment parameters. Hence, for the process planning 
parameters, we only include the controllable parameters; the predefined parameters are omitted for the 
feedback loops in this study. For the details of each data item such as the description, data format, unit 
and methods/devices used to acquire the data, readers are recommended to refer to our previous work. 
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4.0 RESULT 
Figure 2 shows that metal PBF process involves large amounts of heterogeneous manufacturing data 
with highly complicated relationships. Analysing these data to establish metal PBF feedback loops 
requires advanced data analytics tools. As recent advancements in ML have shown great potential in 
solving complicated data analytics problems, this section proposes a ML-based approach to 
developing metal PBF feedback loops. To explain how to apply ML to support the development of 
PBF feedback loops, we propose a generic framework of ML-enabled feedback loops for PBF system 
as shown in Figure 3. This framework is based on the analysis of the types of PBF feedback loops 
presented in Section 3.1.  
 

 
Fig. 3. Generic framework of Machine Learning-enabled feedback loops for PBF process 

 

In general, ML techniques can be applied to support all the four types of PBF feedback loops by 
making use of critical manufacturing data mentioned in Section 3.2. The designed process 
parameters, the monitored process signatures, and the measured product qualities are used as the 
dataset for the off-line ML model training. The trained ML model is then deployed in the PBF process 
to predict either the in-situ process signatures or the final product qualities and provide the optimised 
parameters as the feedback to each PBF stage. Details of each ML-enabled feedback loop are 
explained along with some example applications as follows. In the in-process (melt pool/track) 
feedback control loop, the melt pool/track signatures (melt pool radiation, track width, etc.) and the 
measured melt pool/track qualities (melt pool size, track geometry, etc.) are used as the dataset for the 
off-line ML model training. The trained ML model is then deployed as an in-process quality control 
model that uses the real-time process signatures to predict the quality of the melt pool/track and 
optimise the in-process control parameters in real time. Due to the real-time processing requirement, 
high-performance supervised ML models that can deal with image data such as various CNN models 
are commonly used to assist this feedback loop. An example is the work mentioned in the literature 
review, where high-speed melt pool images are used to predict the melt pool size with a trained CNN 
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model in real time. The predicted melt pool size can be used to provide optimised laser power and 
scan speed as the in-process feedback control. The in-situ (layer) feedback control loop works in a 
similar way as the in-process feedback control loop, but uses the layer signatures (powder bed image, 
layer temperature distribution, etc.) and layer qualities (layer porosity, layer deformation, etc.) to train 
the ML model. After one layer is built, the trained ML model uses the in-situ layer signatures to predict 
the layer quality and optimise the laser power or scan speed for the next layer, or perform a re-melt to 
correct the defects of the previous layer. In this feedback loop, since the prediction is made layer-by-
layer, the computational requirement of the ML model is as critical as the in-process feedback loop. 
Various types of supervised ML models that deal with image data can be applied. An example is from 
where layerwise images and CT scans of the final part are used to train different ML models that 
predict the layer defects after one layer is built. The predicted defects can provide suggestions for 
optimising the control parameters for the next layer. In the ex-situ process plan optimisation loop, 
ML models are developed to find the complicated relationships between the process plan (support 
structure, laser/beam power, scan speed, scan pattern, layer thickness, gas flow rate, etc.) and the final 
product qualities (density, geometry deformation, tensile strength, etc.). Since this is an off-line 
feedback loop, various types of supervised ML models can be applied. A typical example of this 
feedback loop is reported in, where the process parameters and the measured part density are used to 
train ML models to define a good process window for the scan speed. Moreover, since there is no well-
developed simulation model for metal PBF process, ML techniques can also be integrated with physics-
based simulation to achieve the process plan optimisation. The ex-situ product design optimisation 
loop works in a similar way as the ex-situ process plan optimisation but focuses on finding the 
complex relationships between the product design features (material, geometry, feature size, etc.) 
and the final product qualities. Various types of supervised ML models can be applied to analyse the 
relationships between the heterogeneous manufacturing data. An example of this feedback loop is 
reported by Zhang et al. in which they developed ML models for predicting the manufacturability of 
metal PBF parts with different materials, geometric structures, and sizes.  
 

5.0 DISCUSSION  
An emerging idea in computer-aided engineering science is hybrid modelling, or physics-informed 
machine learning. The premise is to make use of a simplified representation of the physics involved in 
the engineering process to be controlled, and to complement this representation by machine learning, 
using data acquired on-the-fly to further increase the predictive capabilities of the digital system. This 
can be achieved in many ways. For instance, inputs of physics-based PBF simulators such as inherent 
strains or convection coefficients may be linked to machining parameters though a non-parametric 
regression, leading to a hybrid model represented by a neural network whereby the last layer is made 
of the physical models. Advanced differentiation techniques developed in the field of modelling with 
partial differential equations may subsequently by used to obtain the quantities required to perform 
back propagation. Similarly, physical measurements such as porosities or microstructure states may 
be predicted via a neural network that takes the output of a physical model as input, for instance the 
solution predicted by a transient thermal problem. Finally, hybridisation may also be obtained by 
allowing the parameters of the physical model to change with time, using time filtering approaches. 
For such advanced digital twinning approaches to be feasible, robust data-to-simulation pipelines 
must be constructed so that inference algorithms may be deployed to compare simulated outputs and 
measurements so that the corresponding error may be minimised during the calibration or 
manufacturing process. This pipeline must also be able to provide real-world feedback to control the 
manufacturing process inputs thus numerically optimised, or to automatise the acquisition of new 
data, in an active learning fashion. Optimising parameters from massive amount of data collected is 
typically tackled by offline learning, i.e. supervised or unsupervised learning. However, it has always 
been an interesting subject to explore how a model can be established for on-line PBF process control 
optimisation. One promising approach is to deploy the technique of deep reinforcement learning 
(DRL) that models the sequential decision-making problem by an agent, which determines the next 
action to interact with the environment given the observation (i.e. state) with the goal of maximising 
long term rewards towards an optimal solution. The most well-known application with DRL is the 
success of AlphaGo, which beats the world champion of the GO game and several recent 
publications, especially the work reported by DeepMind, claiming human-level intelligence for game 
environment such as Atari. For PBF process control specifically, the problem is considerably more 
complicated. First, the Go or Atari environments are represented in discrete space, where Deep Q-
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Learning Network (DQN) can be used directly. However, for real-world metal PBF processes, we 
need to operate the manufacturing processes in a continuous space, i.e. parameters of laser power, 
exposure time, scan path, and so on. Many attempts have been made for learning in continuous space 
and the most prominent method is the Deep Deterministic Policy Gradient (DDPG) network. DDPG is 
an actor-critic-based network, allowing, on one hand, DQN-like off-policy learning for efficient 
updating of the value functions from experience buffer and, on the other hand, train a policy network 
simultaneously. Second, a compact representation of the states will be required. With the Atari games, 
raw pixel-wise state representations are used. However, it is still considered less challenging than the 
PBF processes, considering the possible state space of the environment with not only 3D geometric 
information, but also all the relevant dynamic physical attributes of the process. Abstracted 
parameters of the product, such as dimensions, densities, statistical information of defects or quality 
and so on, could be potentially considered for representing the states. Another challenge is that the 
simulation is highly time-consuming and learning meaningful rewards from such a reward-sparse 
environment will be very difficult. Thus, how to accelerate the process of learning needs to be 
addressed. Such mechanisms may include providing human demonstrations from experts with prior 
expert knowledge. Challenges for the development of ML-enabled metal PBF feedback loops have 
also been recognised from the current limitations of the related technologies. It is noted that most of 
the commercial metal PBF machines provide very limited controllability for the users. As a result, the 
on-line process control feedback usually cannot be achieved due to the closed control system. Another 
issue with current metal PBF machine is the poor data interoperability. While traditional subtractive 
manufacturing has taken advantage of open and unified data communication standards such as 
MTConnect and OPC UA [28,29], there is currently no unified data communication protocol for 
metal PBF machines. This not only poses challenges for the field-level manufacturing data 
acquisition, but also limits the transferability of the developed feedback loops between different metal 
PBF machines. Development of ML models usually requires large amounts of manufacturing data. 
For metal PBF process where manufacturing data is obtained from practical experiments, the time and 
cost for the experiments have to be taken into account. The poor interpretability, explainability and 
trustability of some deep learning models may also limit their application in the manufacturing 
environment. Moreover, the on-line ML models usually require very high computation capability in 
the field level, which is also a challenge for current shop floors. The limitations of current process 
monitoring and quality measurement technologies also hinder the development of ML-enabled metal 
PBF feedback loops. Though various types of in-situ monitoring techniques have been developed in the 
past several decades, detecting the real-time process signature accurately, efficiently, and cost-
effectively has always been a major challenge. Besides, the limitations of current non-destructive 
testing (NDT) technologies also pose challenges for labelling the PBF manufacturing data. For 
example, measurement and localisation of internal defects such as porosity of a large-sized high-
density metal part remains a critical challenge.  
 

6.0 CONCLUSIONS 
Metal PBF has been attracting an increasing attention as an emerging metal AM technology. Despite 
its distinctive advantages compared to traditional subtractive manufacturing such as high design 
flexibility, short development time, low tooling cost, and low production waste, the inconsistent part 
quality caused by inappropriate product design, non- optimal process plan and inadequate process 
control has significantly hindered its broad acceptance in the industry. To improve the part quality 
control in metal PBF process, this study proposes a novel ML-enabled approach for developing metal 
PBF feedback loops. First, a categorisation of the types of metal PBF feedback loops is proposed 
based on the metal PBF process stages. The critical manufacturing data that affect the final product 
quality in each stage are identified. Second, a generic framework of ML-enabled metal PBF feedback 
loops is proposed and each feedback loop is explained in detail with some practical examples. 
Finally, the opportunities and challenges of the proposed approach are discussed. The proposed ML-
enabled feedback loops enable the vision of closed-loop manufacturing for metal PBF processes, in 
which the in-situ process signatures monitored during the manufacturing stage and the measured 
product qualities are fed back to product design, process planning and on-line process control stages to 
ensure the process stability and optimise the final product quality. The applications of ML techniques 
in metal PBF process allow efficient and effective decision-makings to be achieved in each PBF 
process stage, and hence have a great potential in reducing the number of experiments needed, thus 
saving a significant amount of time and cost in metal PBF production. The proposed ML-enabled 
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feedback loop approach is also in line with the emerging concepts in Industry 4.0 and Smart 
Manufacturing such as Digital Twin and Cyber-Physical Machine Tool. It can be applied as a generic 
ML-enabled feedback loop solution for other types of manufacturing systems to facilitate the 
development of the envisioned Cyber-Physical Production System (CPPS) and Smart Factory in the 
era of Industry 4.0. 
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