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ABSTRACT 
For improving manufacturing efficiency and minimizing costs, design for additive manufacturing 
(AM) has been accordingly proposed. The existing design for AM methods are mainly surrogate model 
based. Due to the increasingly available data nowadays, machine learning (ML) has been applied to 
medical diagnosis, image processing, prediction, classification, learning association, etc. A variety of 
studies have also been carried out to use machine learning for optimizing the process parameters of 
AM with corresponding objectives. In this paper, a ML integrated design for AM framework is 
proposed, which takes advantage of ML that can learn the complex relationships between the design 
and performance spaces. Furthermore, the primary advantage of ML over other surrogate modelling 
methods is the capability to model input-output relationships in both directions. That is, a deep neural 
network can model property-structure relationships, given structure-property input-output data. A case 
study was carried out to demonstrate the effectiveness of using ML to design a customized ankle brace 
that has a tunable mechanical performance with tailored stiffness. 
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1.0 INTRODUCTION 
Additive Manufacturing (AM) fabricates products from digital 3D models in a piece-by-piece, line-by-
line or layer-by-layer manner, which is different from conventional manufacturing processes. This 
gives AM more freedom on design as AM can fabricate more complicated parts, theoretically in any 
shape, without spending more efforts on manufacturing processes. AM bonds, places, and/or transforms 
volumetric primitives or elements (voxels) of raw material to fabricate the final products. The size and 
shape of each voxel and the bonding strength between voxels depend on the raw material properties, 
the AM machine (e.g., nozzle diameter), and the process parameters (e.g., print temperature, print speed, 
laser power). Therefore, design for additive manufacturing (DfAM) was proposed with the aim of 
designing and optimizing the product together with its manufacturing systems to increase the product’s 
quality and performance, and to minimize the development time and cost. DfAM actually is a type of 
Design for Manufacturing and Assembly (DfMA) but is quite different from traditional DfMA. The 
unique capabilities of AM technologies make designers re-think the traditional DfMA process applied 
in AM as AM can fabricate complex structures that are impossible in conventional manufacturing 
techniques. AM also eliminates the assembly process as AM can manufacture the whole product in a 
single fabrication process [1-11]. This leads to the new term of DfAM. which considers the unique 
capabilities of AM and the difference between traditional manufacturing and AM techniques. 
Compared with traditional manufacturing processes, AM mainly has the following four unique 
capabilities: (1) shape complexity: as AM is a layer-by-layer process, it is possible to fabricate virtually 
any shape; (2) hierarchical complexity: hierarchical multiscale structures can be designed and 
manufactured from the microstructure through geometric mesostructure to the part-scale 
macrostructure; (3) material complexity: material can be processed one point/layer at a time in AM 
processes; and (4) functional complexity: fully functional assemblies and mechanisms can be fabricated 
directly in a single AM process. These capabilities also, however, bring new challenges in design 
search and optimization due to the increased number of design variables and their complicated 
interactions over multiple domains. Many studies have been carried out for accommodating all these 
design variables and reflecting their interactions, as discussed, for example, and will not be detailed 
here. However, all these DfAM approaches are based on traditional surrogate models [12-23]. In fact, 
machine learning (ML) can now be applied for DfAM due to the increasingly available AM data and 
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the powerful ability of ML to learn complex relationships among data. Table 1 compares the 
disadvantages and advantages between conventional surrogate model based DfAM and ML based 
DfAM [24-37].  
 

Table 1 Advantages and disadvantages of conventional surrogate model based and ML based 

 
The definition of ML is “allowing computers to solve problems without being specifically 
programmed to do so”. The application of ML techniques has increased tremendously over the past 
years due to the availability of large amounts of data, computer technology development and the 
increased power of available ML tools. ML has also been used in AM with different aims, including 
process optimization, dimensional accuracy analysis, manufacturing defect detection and material 
property prediction. In this paper, a comprehensive ML integrated DfAM framework is proposed to 
take advantage of ML. The framework is mainly based on using ML to learn process-structure-property 
(PSP) relationships proposed. ML based DfAM can achieve reversed design without the need of 
establishing complex relationship equations since an ML-based output-input model can be constructed 
readily, given input-output data [38-46]. Hence, property-structure relationships can be modelled 
directly, even though data were generated as structure-property relationships. Furthermore, ML 
based models have virtually no limitations on the complexity of the design problem if enough data are 
available. The main contribution of this paper is establishing a ML integrated DfAM framework and 
detailing the process of design from property to structure through ML. Furthermore, the primary 
advantage of ML over other surrogate modelling methods is the capability to model input- output 
relationships in both directions, which can achieve reversed design. The proposed ML integrated 
design approach can obtain the objective design directly through inputting the property requirements, 
which traditional surrogate model based design process cannot achieve [47-58].  

 Advantages Disadvantages 

Conventional 

surrogate model 

based DfAM 

-- No need to obtain large amount of 

data from experiments 

-- Comparatively low-cost 

-- Hard to establish relationship 

equations and sometimes even 

impossible, especially for complex 

optimization problems where there 

are many design variables and their 

interactions are complicated and 

unclear 

-- Need to explore the design spaces of 
variables 

-- Hard/impossible to achieve reversed 
design 

ML based 
DfAM -- No need to establish complex 

relationship equations 

-- Easy to achieve reversed design 

-- Not limited by the complexity of 

the design problem 

-- Require large amount of data 
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2.0 LITERATURE REVIEW 
 

In conventional surrogate model based design processes, design exploration and exploitation are often 
adopted which are the two main strategies to provide insight into the design space. Studies proposed a 
combined model for conceptual design, considering both multi- attribute utility theory and the 
perspective of set-based design [1-6]. With the aim of designing heterogeneous scaffolds for tissue 
engineering, projects built multi-stage Bayesian surrogate models to describe the relationship between 
the design parameters and the therapeutic response. Studies proposed a covariance-based method to 
establish multistage surrogate models in the conceptual design stages for a thermal design problem. 
Bayesian network classifier (BNC) based design exploration methods were proposed by projects to 
design negative stiffness metamaterials with better mechanical stiffness and loss properties. In 
addition, research proposed a Bayesian network classifiers model to classify the design space into 
unsatisfactory or satisfactory regions for designing a spring and an unmanned aerial vehicle [7-16]. 
These BNC methods formulated relationships between design spaces in the analysis direction (e.g., 
structure to property), then used back-propagation to invert the relationships. Studies combined 
model-based simulation and set-based design to obtain the design space for designing seismic resisting 
structural frames. Choi et al. (2008) developed an inductive design exploration method for designing 
robust multiscale materials. However, since these design approaches are surrogate model based, each 
requires an iterative approach to inverting an input-output relationship that is central to their design 
process [57-66]. It is recognized that Bayesian network classifiers are often considered as a ML 
method. Machine learning has already been used in AM with different aims such as process optimization 
and manufacturing defect detection. Table 2 lists the available studies that can be seen as using ML for 
some DfAM considerations with corresponding objectives. They mainly focus on using ML to improve 
or optimize the process parameters for AM techniques with corresponding property requirements. 
However, they are not proposed in a systematic way for DfAM. References used ML to predict surface 
roughness of AM printed parts in different process parameters in material extrusion (MEX) (informally 
called fused deposition modeling (FDM)), while others used ML to predict the surface roughness of 
AM fabricated Ti-6Al-4V parts in powder bed fusion. References used ML to predict the surface 
qualities of AM fabricated parts in 3D Concrete Printing and binder jetting, respectively. The above 
studies can be used to design AM products with required surface quality [67-73]. ML has been applied 
to predict geometric accuracy and dimensional variations of AM printed parts using MEX and in 
polymer powder bed fusion (PBF). Several groups have applied ML to predict deposit sizes in 
directed energy deposition, including bead width and height in wire-arc DED and printed part height in 
laser-based DED. Thermal deformation of printed parts has been modeled using ML for PBF parts. 
These studies can be used to design AM products with geometric requirements. Studies used ML to 
predict printable bridge length in different process parameters that can be used to design support 
structures in AM. All the above research works can be seen as process-structure relationship studies 
from the viewpoint of DfAM. Regarding mechanical and physical properties, some groups have 
developed process-property relationships using ML [71-77]. One group applied ML to predict the 
mechanical properties of polymer powder bed fusion manufactured polyamide 2200 parts. Projects 
used ML to predict wear strength of printed parts in MEX. Studies used ML to optimize the process 
parameters for obtaining required viscoelastic properties of fabricated parts in MEX. ML has also 
been applied in projects to optimize the process parameters for obtaining required shrinkage behaviour 
of printed PA 3200GF specimens in PBF. These studies can be used to design AM products with 
mechanical requirements. However, the research focused on property prediction, not part design from 
a holistic DfAM viewpoint. In contrast, this paper will propose a comprehensive ML integrated 
DfAM framework based on process-structure-property relationships. A case study will be carried out 
to show the ML enabled design process from property to structure [1-16]. 
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3.0 RESEARCH METHODOLOGY 

 
A design problem formulation was proposed (Rosen 2007) for computer-aided design (CAD) using the 
process-structure-property (PSP) linkage, as shown in Fig. 1. For example, in the MEX process, PSP 
relationships for polymers relate process conditions such as print temperature, to microstructure 
characteristics such as voids, to mechanical properties such as strength. Traditionally, PSP 
relationships are mainly obtained through surrogate models [7-18]. However, the PSP relationships are 
generally highly non-linear, high-dimensional and even non-convex, which makes it hard to establish 
the PSP relationships with high accuracy, particularly for some complicated problems. In this paper, 
we propose a ML integrated framework to establish the relationships between process, structure and 
property as shown in Fig. 2(a).  

 

Fig. 1 Process-structure-property-based design problem formulation for DfAM proposed 

Alternatively, an ML-trained model can utilize the structure parameters (e.g., surface roughness, 
dimensional accuracy) as the inputs while the AM process parameters (e.g., print speed, print 
temperature, layer thickness and others) can be the outputs for obtaining the relationship from structure 
to process [19-27]. Thus the trained ML model can be used for future designs from structure to process. 
Similarly, other relationships among process-structure-property can also be established in whichever 
direction through ML as shown in Fig. 2(b).  
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In fact, the studies listed in Table 2 can be categorised into establishing the relationships of process-
structure or structure-property. However, none of these studies proposed a complete framework for ML 
integrated DfAM based on PSP model. Fig. 2 depicts how the complex relationships between process-
structure-property can be learned using ML. With the help of ML, the analysis process from process to 
structure then to property and the design process from property to structure then to process (as shown in 
Fig. 1) can now be combined with the help of ML (Fig. 2). Next, we will provide and detail a ML 
integrated DfAM method based on property-structure relationships. For instance, the process 
parameters from AM processes (e.g., print speed, print temperature, layer thickness and others) can be 
the inputs for ML model, while corresponding obtained structure parameters (e.g., surface roughness, 
dimensional accuracy, voids) can be the outputs for training the ML model [28-36]. Then the trained 
ML model records the process-structure relationship that can be used in future design processes. In this 
section, we propose a specific ML integrated DfAM method based on property-structure relationships. 
This design method can be used to design products where distributions of mechanical properties are 
desired. The achievement of these mechanical property distributions will be achieved by tailoring part 
geometry, not by using multiple materials. Fig. 3 shows the framework of how this design method 
works [37-46]. The proposed design method includes four steps. Determine the desired design space. 
This includes determining the properties/responses that are of interest (e.g., stress-strain responses of an 
ankle brace) and the design variables that are of interest (e.g., the geometric variables of horseshoe 
structure for ankle brace). Design a sampling strategy for the design space, then for each sampled point 
obtain the corresponding mechanical properties through simulation (e.g., ABAQUS). This will record 
the mechanical properties of parts in different geometries. The aim of this step is to get enough data for 
machine leaning model establishment [48-57].  

4.0 RESULT 
When a person’s ankle joint is injured (e.g., acute sprains), ankle braces generally can be used as 
orthoses for assisting rehabilitation. Ankle braces help to prevent further injury to the ankle joint while 
allowing restricted movements. The range of motions and allowable loading conditions for joints 
along the course of recovery can be adaptively adjusted by using the optimally designed ankle braces, 
ensuring tissue healing while avoiding extreme load conditions. In this case study, the design of the 
geometric structure of the ankle brace is carried out by using ML and compared to results using a 
different design method and surrogate models based on Gaussian process regression. Before using ML 
to design the required geometric values (W, R, L, α and β) for meeting corresponding stress-strain 
responses, the ML model and the data for training the model should be obtained [58-66]. The ranges of 
the design variables are listed in Table 5. Thousands of data points within the range of each variable 
were generated randomly and different variable values were also combined randomly to obtain 
different groups of values of the variables. Then, geometric models of horseshoe lattice structures 
representing the data point were fed into ABAQUS/STANDARD (Dassault Systèmes®, 2017) to 
characterize their corresponding stress-strain responses in both orientations. This study considers the 
in-plane deformation only, and the structure was therefore modelled as 2D beams using B32H 
elements. To avoid edge effects, a square matrix with a sufficiently large number of horseshoe unit cells 
(5 × 5) was used in the simulation. Nodes on the bottom edge of the horseshoe matrix were fixed with an 
encastre boundary condition; meanwhile, a tensile load was applied through a displacement control of 
nodes on the top edge of the horseshoe matrix [67-77]. A Deep Neural Network (DNN) was used to 
establish the ML model for this case study as the relationship between inputs and outputs can be cast 
as a regression problem that can be well resolved by DNN. In this case study, a deep neural network 
model with ten layers (as shown in Fig. 4(b)) was used to establish the relationship between the W, R, 
L, α and β variables and stress-strain responses. The corresponding numbers of neurons and activation 
functions used in each layer are listed at the bottom of each layer in Fig. 4(b). The number of neurons 
should be increased and then decreased as the layer number increases. The neuron number in the 
middle layer should be the largest. This is the general case and, in these settings, the machine learning 
model generally can work with better accuracy. The corresponding ankle brace design with the 
requirements as listed in Table 4 can be obtained now using the established ML model. For the horseshoe 
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geometry of Zone 1, the corresponding stresses of 0.47 and 0.24 were fed into the ML model to obtain 
the geometric values W, R, L, α and β. Similarly, Zones 2 and 3 were designed using their ML models. 
To illustrate the advantage of the ML based method, computation times will be considered for 
determining design variable values. Our ML method only takes 2ms or so to compute the design once the 
ML model has been established. For the conventional surrogate model in (Y. Xiong et al. 2019), it takes 
about 19s to get the design, about 5 orders of magnitude difference. The effectiveness of our method is 
based on the ability of ML to establish the process-structure- property relationship in whichever 
direction as shown in Fig. 2. This paper only shows the example of “from property to structure” due to 
the current limited data from AM. However, as additional AM data and relationships are determined, 
more complete and powerful PSP models can be established in the future directly through ML to support 
a wide range of design problems.  
 

5.0 CONCLUSIONS 
In this paper, a ML integrated DfAM framework is proposed to establish process-structure- property 
relationships, which can be helpful to design for additive manufacturing. With the help of ML, the 
analysis and design processes based on PSP no longer need to establish complex surrogate models 
which are also unable to establish the relationships of PSP in a reversed direction. The relationships 
between process, structure, and property can be established simply through ML in whichever direction 
is desired using the available AM data. DNNs for point data and CNNs for distributions and image data 
were proposed as the specific ML techniques for the proposed DfAM framework. An ankle brace 
design problem was used to illustrate the application of the proposed framework. DNNs modelled 
property-structure relationships used for ankle brace design. Based on the results, it was demonstrated 
that the property-structure DNN models were significantly more computationally efficient than 
conventional surrogate models in computing design variable values, given desired property values. The 
conventional surrogate models (Gaussian process regression models) needed to be inverted using an 
optimization method to enable design variable calculation. The property-structure DNN models were 
trained with the same number of data points as the GPR models and proved to be as accurate. This 
example helps validate the proposed DfAM framework. The DfAM framework proposed the use of 
process-structure-property relationships; however, only structure-property and property-structure 
relationships were investigated in this paper. Thus, more research is needed to extend the models and 
method for the larger PSP scope. The property-structure relationships modelled using DNNs in this 
work related stress-strain values to five design variables (2 inputs, 5 outputs). It is an open issue to 
determine how well more general, larger, and more complex relationships can be modelled using 
DNNs and CNNs. 
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