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ABSTRACT 
Melt pool temperature contains abundant information on metallurgical and mechanical aspects of 
products produced by additive manufacturing. Forecasting melt pool temperature profile during a 
process can help in reducing microstructural porosity and residual stresses. Although analytical and 
numerical models were reported, the performance of these are questionable when applied in real-time. 
Hence, we developed data-driven models to address this challenge, for continuous forecasting layer-
wise melt pool temperature using a hybrid deep learning technique. The melt pool temperature 
forecasting by the proposed CNN-LSTM model is found to be better than other benchmark models in 
terms of accuracy and efficiency. The model results have shown that combining CNN and LSTM 
networks can extract the spatial and temporal information from the melt pool temperature data. Further, 
the proposed model results are compared with existing statistical and machine learning models. The 
performance measures of the proposed CNN-LSTM model indicate a greater potential for in-situ 
monitoring of additive manufacturing process. 
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1.0 INTRODUCTION 
 
Metal additive manufacturing (AM) processes of directed energy deposition (DED) offer numerous 
possibilities for producing complex parts in aerospace and automotive industries without design 
constraints. Compared to traditional manufacturing, AM offers four key advantages that include design 
flexibility, sustainability, higher accuracy and efficiency, and faster production cycles. In recent years, 
AM techniques have brought key transformations in aerospace and automotive industries. For example, 
Boeing used more than 600 additively manufactured parts in its aircraft 777X. The BMW Group has 
produced over 300,000 additively manufactured parts in just one year [1-13]. Wire arc additive 
manufacturing also known as DED-arc produces near net-shaped parts by melting wire feedstock with 
an electric arc. The electric arc heat source has many processing advantages over other heat sources 
such as electron beam and laser. Plasma arc-based AM techniques offer wide ranges of power densities 
and metal deposition rates with high efficiency and flexibility. Cold metal transfer (CMT), which is an 
arc welding technology has shown significant potential in metal additive manufacturing of 
components. CMT is a relatively new technique that is characterized by many advantages including 
low thermal heat input and high deposition rates [14-26]. A substantial amount of research was 
reported on application of CMT for additive manufacturing in recent times. The effects of various arc 
modes in CMT process on porosity was reported. Fang et al. studied the evolution of microstructures 
and mechanical behavior of aluminum alloys. Ryan et al. studied the influence of build parameters and 
wire batch on porosity of CMT based additively manufactured aluminum alloy. There are still some 
critical challenges such as porosity and voids, particularly for producing parts with aluminum (Al) 
alloys, that need to be addressed before AM technologies take up widespread adoption in the 
manufacturing sector. The possible causes of microstructural defects are the lack of fusion, insufficient 
heat, entrapped gases and rapid solidification [27-38]. Investigating melt pool temperature profile such 
as temperature distribution and heat flow mechanism reveals information on most of the possible 
causes of microstructural defects. The melt pool temperature profile contains abundant information and 
that can be used to reduce the porosity defects and voids of the Al parts manufactured by AM. The melt 
pool in wire-arc additive manufacturing (WAAM) refers to the vicinity of electric arc and molten 
material interface where the wire feed stock is melted and form spherical molten metal droplet. 
Temperature variations can significantly affect the evolution of porosity in final products. In 
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comparison to powder-bed AM, very few reports are available on WAAM that discuss the process 
parametric effects and melt pool temperature variations on porosity formation. This is due to the 
complex and dynamic nature of arc [39-47]. The metal deposition using an electric arc imposes thermal 
cycles not only on solidified material and substrate, but also on the previous deposited layers. The 
imposed thermal cycles result in partial melting of previous layers below the deposited layer, up to 4 
layers, creating non-isothermal heat treatment. This heat effect leads to expansion and contraction of 
deposited metal and subsequent generation of residual stresses in the deposited structures. Also, the 
nucleation and dissolution of eutectic phases of alloys during solidification and melting processes, 
resulted in the formation of pores. The degree of residual stresses and porosity is a function of 
temperature distribution and thermo physical properties. Therefore, melt pool temperature monitoring 
and controlling helps in achieving desired microstructural and mechanical properties of the WAAM 
components [48-56]. This study aims to develop data-driven models for continuous forecasting of 
layer-wise melt pool temperature in order to control the microstructural defects. The temperature 
profile in the melt pool can be monitored using various types of sensors, such as pyrometers, 
thermocouples and infrared (IR) radiation. Thermocouples have limitations in being used for in-process 
monitoring, as they need contact with the parts to monitor temperature [57-68]. However, IR cameras 
and pyrometers are feasible for monitoring temperature of a process without contact. With the recent 
advancements in instrumentation, IR cameras are capable of obtaining temperature data with a 
sampling rate up to 100kHz. The temperature profile during DED processes have been extensively 
studied with regard to physics involved and data – based models. Physics-based models can be broadly 
categorized into numerical and analytical methods [69-77]. Analytical temperature models of DED 
involve solving of closed form welding heat transfer equations using boundary conditions. Cadiou et al. 
proposed a 3D heat transfer model for wire-arc additive manufacturing process The major limitations 
of analytical models are their general applicability and failure to address the uncertainties of thermo 
physical properties. Finite element method (FEM) is a numerical method of modelling of temperature 
profile. The accuracy of these models is questionable due to the lack of process knowledge [78-85]. 
Also, the performance of numeral models depend highly on boundary conditions, element types and 
meshing schemes. In contrast to physics-based models, data driven models offer many advantages and 
can model highly non-linear processes such as melt pool formation with good accuracy and efficiency. 
Further, data-driven models require only limited knowledge of process and physics involved. Some 
studies were reported on defect detection from melt pool temperature profile during DED process by 
using classical machine learning and deep learning techniques [1-7]. Recently, a study was performed 
on prediction of melt pool temperature during DED process using machine learning. However, there 
are very few papers reported on controlling and monitoring of temperature profile during DED process. 
This research gap can be effectively addressed using deep learning time series forecasting techniques. 
The main idea is that deep learning time series models can forecast layer-wise melt pool temperature 
during DED process with higher accuracy and faster response times. In most of the time series data, 
correlations exist between observations [8-14]. A standard neural network considers all the 
observations as independent, that leads to an erroneous inference. With recent developments in deep 
learning techniques, many special types of neural networks have been introduced to deal with noisy 
and correlated time-series data and can lead to more accurate forecasting. Though some ARIMA 
family models can address the correlations in time series, they do not consider the effects of spatial 
dependencies. Traditional time series models such as ARIMA and SARIMAX works well when 
seasonal and trend components are known [15-21]. However, in real-time manufacturing, both seasonal 
and trend components change with regard to process parametric variations. These parameters need to 
be changed for each simulation when using traditional time series models. Among various deep 
learning techniques, convolutional neural networks (CNN) and recurrent neural networks (RNN) are 
most popular, efficient and widely used neural networks. Long short-term memory (LSTM) networks 
are special type of RNN that deals with long-term sequential dependencies very effectively. CNNs are 
traditionally used for image classification and recognition and do not account for sequential 
dependencies [22-29]. However, when dealing with time-series data, the main advantage of CNN is 
dilated convolutions. The CNN allows neural network to extract relationships between different 
observations in time series that accounts for spatial dependencies. Therefore, combining the CNN and 
LSTM models to exploit the benefits of spatial and temporal information of time series could improve 
the forecasting performance. In this paper, a hybrid deep learning model is proposed to forecast the 
layer-wise melt pool temperature during DED process. The proposed CNN-LSTM model performance 
is evaluated using RMSE, MAE and MAPE, and also compared the performance metrics with 
traditional statistical, machine learning and deep learning models [30-37].  
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2.0 LITERATURE REVIEW 
 
The heat flow during DED is a quasi-stationary process, with respect to moving arc heat source. To be 
specific, the temperature distribution in the melt pool surface does not change with time except for 
initial and final transients. Thus, thermal sensing techniques are an effective way of monitoring DED. 
Thermal methods are fast when compared to other non-destructive testing methods such as ultrasonic, 
for quality monitoring of process. It is a very feasible process and allows rapid results during 
manufacturing of parts. Every object emits electromagnetic radiation from its surface proportional to its 
temperature [1-16]. This intrinsic radiation associated with temperature is called infrared radiation and 
can be used for temperature measurement. Khanzadeh et al. developed a thermal sensing system with a 
pyrometer and IR camera to analyze the temperature changes in laser-based AM process. The melt pool 
images were analyzed using self-organizing maps (SOM). The pro- posed methodology was able to 
detect the porosity locations with an accuracy of 85%. Sreedhar et al. developed an online monitoring 
system for gas tungsten arc welding (GTAW) using thermal images. The authors noticed a distinctive 
pattern at the defective locations over non-defective areas [27-24]. Mireles et al. proposed in-situ 
monitoring technique for defect detection. The authors mapped the results obtained from computed 
tomography (CT) and layer-wise thermography to find defects. Krauss et al. developed a model to 
detect flaws in selective laser melting (SLM) process using thermography measurements of molten 
pool. Analytical models of temperature distributions of wire-based DED have been extensively studied 
in literature [38-44]. Rosenthal and Rykalin developed analytical models to calculate weld dimensions 
from temperature distributions of moving point heat source. Several analytical models have been 
developed for additive manufacturing processes. Pinkerton and Li derived a model that is applicable 
for low travel speeds from Rosenthal equations. Beuth and Klingbeil developed analytical model to 
predict melt pool length. However, the performance of analytical models for in-situ monitoring of 
additive manufacturing processes is questionable. Also, physics-based analytical models cannot 
address the uncertainties and variances that occur during a process [45-51]. Numerical models of 
additive manufacturing processes have been shown to be efficient in predicting thermal profile given 
all the boundary conditions. Hejripour et al. developed a fluid flow and heat transfer model for WAAM 
process. The author predicted the shape of deposited material for single layer using an arbitrary 
LagrangianEulerian method. Kou proposed a 3D model of WAAM process to predict material 
dimensions and temperature distributions from machine operating parameters. The model was 
developed by taking into account electromagnetism, fluid flow and heat transfer. Zhang et al. derived a 
relationship between thermal profile and microstructures evolution in melt pool by using finite element 
method. Numerical models have some important limitations that include high computational costs, 
oversimplified assumptions and various meshing schemes [52-58]. Data-driven models of melt pool 
temperature during DED processes have recently gained a considerable amount of interest among the 
researchers. Khanzadeh et al. detected porosity in additively manufactured samples from melt pool 
temperature profile using supervised machine learning techniques. The extracted features of melt pool 
images were fed to k-nearest neighbor (kNN) method and the predicted results were in good coherence 
with experimental results. Mozaffar et al. estimated high-dimensional thermal profile in DED process 
using the large amount of data obtained from the fine element code [59-66]. A gated recurrent unit 
(GRU) model was used to predict the temperature profile and the results of model shown high 
accuracy. However, general applicability of these models are questionable due to the stand-alone 
models used. For example, in CMT technology, the process behavior leads to a seasonal trend and that 
need to be addressed during forecasting. The stand-alone models may fail to understand the process 
profoundly. In recent years, many researchers have combined CNN and LSTM model to exploit the 
benefit of spatial and sequential features in variety of applications. Huang et al. proposed a particulate 
matter (PM2.5) concentration forecasting system by combining CNN and LSTM networks. Further, the 
authors evaluated model using MAE and RMSE and concluded that the performance of model is better 
than the traditional machine learning models [67-74]. A similar work was reported for forecasting 
PM2.5 using CNN-LSTM network. Kim et al. proposed a hybrid CNN-LSTM model to predict the 
residential electrical energy consumption and analyzed the various variables that affect the prediction 
of energy consumption [40]. Rehman et al. improved the accuracy of movie reviews sentiment 
analysis. A considerable amount of research has been conducted in the field of natural language 
processing using CNN-LSTM networks [75-82]. In the field of medical image processing, Petmezas et 
al. developed an automatic atrial fibrillation detection system from electrocardiogram (ECG) signals 
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using CNN-LSTM network with a high sensitivity and specificity. Vidal et al. used CNN-LSTM 
network to predict the future volatility of gold prices and the performance is compared with the other 
classic models. The CNN-LSTM network proved to be a potential technique in forecasting time series 
and opening up new possibilities in various areas of applications [79-85]. 

3.0 RESEARCH METHODOLOGY 
 
The main idea of this research is the development of hybrid deep learning model for forecasting melt 
pool temperature during additive manufacturing process by exploiting the benefits of convolutional and 
long short-term memory networks. Convolutional networks are special kind of neural networks for 
processing grid-like topology, such as time series (1D) and images (2D). They have been effective for 
learning spatial information of time series. Whereas, LSTM networks are tremendously successful in 
identifying short and long-term dependencies [1-17]. Thus, the proposed CNN-LSTM model for 
forecasting melt pool temperature combines the advantages of both CNN and LSTM networks. The 
hybrid model consists of two components: The first component consists of convolutional and pooling 
layers, in which features are developed from the internal representation of time series data, while the 
second component exploits the features generated by LSTM and dense layers [8-27]. Each layer is 
briefly discussed in the following sections. Figure 1 shows the 1D convolutional operation. 
Convolutional networks have advantages such as sparse interactions and weight sharing over 
multilayer perceptron networks. This effectively reduces the number of parameters used in model 
computation. The output s in Fig. 1 is the convolved output of three inputs, that is, the output is only 
affected by the kernel width [28-37]. 

 

The CNN layer receives step-wise melt pool temperature variables as inputs. The inputs must be 
represented in a structured matrix form, since the technique is originally developed for grid-like 
topologies. The convolutional filter consists of coefficient values in a matrix form and can be 
considered as a tiny window. This window slides through input matrix performing convolution 
operation. The output layer of CNN provides extracted feature information to several hidden layers and 
LSTM network. Each hidden layer of CNN consists of an activation, convolution and pooling layers 
respectively. Convolution layer performs convolution operation on an input sequence [38-46]. This 
operation reduces the number of parameters and leads to a deeper CNN-LSTM network. If xi, where i 
= 1, 2, ..., n is the input vector of melt pool temperature steps and n is the normalized unit window, then 
the resultant output vector, yij of the lth convolutional layer is as follows [47-58].  

 

where σ is the activation function, blj is the bias for jth feature map, w is the kernel weight, and m is 
the index value of filter. The output of each neuron cluster is mapped to the next layer by pooling 
operation. This helps in reducing the number of computational parameters and cost. The pooling layers 
produce summarized values of the convolved features. The max-pooling for predicting melt pool 
temperature utilizes the maximum value of a convolved matrix, which adjusts over fitting issue also. 
The max pooling layer operation is represented in Eq. (2), where T is the stride and R is the size of 
pooling. The equation performs pooling operation on the previous convolutional layer [59-68]. 



International Journal of Applied Science and Engineering Research     Volume 15, Issue 6 – 2023 

Copyright © The Author(s). Published by Scientific Academic Network Group. This work is licensed under the Creative Commons Attribution International License (CC BY). 

244	

 

LSTMs are a special kind of artificial RNN architecture that are capable of learning long-term 
dependencies of a time-series data. The issue in long-term memory of traditional RNNs was 
successfully addressed by LSTMs for sequential data. The hidden layers of these models employ cyclic 
connections which store useful information from previous states. Further, LSTM networks effectively 
tackle vanishing gradient problem of RNNs by storing useful information and discarding unnecessary 
information. Thus, LSTM networks provide better performance over classical RNN models. The 
LSTM layer of CNN-LSTM network stores the important information of melt pool temperature 
distribution that is extracted by the CNN layer. The output of LSTM layers is the resultant of 
consolidated memory units by storing long-term memory of previous hidden states. These memory cell 
units are able to extract and analyze temporal information of sequential data. The output information of 
CNN layer is fed to the gated units of LSTM network. For forecasting melt pool temperature time-
series data, LSTM networks are well suited, by addressing the vanishing and explosive gradient 
problems that occur in traditional recurrent neural networks [69-76]. 

 

The three-gate unit mechanism shown in Fig. 2, represents the working of each memory cell at a 
particular run. The gate unit is a combination of input, forget and output gate. The input gate along 
with control gate ct , controls the information that has to be stored in the memory cells at given time t. 
The forget gate ft controls the previous intervals information and decides which information has to be 
kept on memory cell, while output gate ot decides which information could be used for the memory 
cell output. Equations. (3) – (5) describes the operation of a LSTM unit [51-64]. 

 

Equations (6) and (7) provides the cell and hidden (ht) states derived from the input, forget and output 
gates. σ is an activation function, and W and b represents weight matrix and their associated biases. 
The output, pt of pooling layer at time t contains crucial information of melt pool temperature time-
series data and passed to an LSTM cell [38-51]. 

 

The output of LSTM layer is fed to the fully connected layer. This can be used to generate melt pool 
temperature forecasting over a certain interval of time. Here, we fore- casted the melt pool temperature 
for the final layer while producing thin-wall structures. The proposed CNN-LSTM architecture is 
shown in Fig. 3. The input of the network is melt-pool temperature measurements for nine layers of 
deposition. The output of the network is forecasted values of melt pool temperature for 10th layer. The 
network in convolution and pooling layer consists of two Conv1D layers, two max-pooling layers and 
one time-distributed layer. Subsequently, features extracted from the convolutional layer is passed 
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through LSTM layer, followed by dense layers. Rectified Linear unit (ReLu) is used as an activation 
function for convolutional layers. Though there are other modified activation functions, ReLu shown to 
be effective for melt pool temperature forecasting with no sign of exploding or vanishing gradient 
problems. To avoid over fitting during training, dropout was used. Dropout is a widely used technique 
to avoid over fitting that randomly ignores the neurons during training phase. Further, number of 
epochs was carefully selected to avoid over fitting and same number of epochs were used for each 
sample. The design parameters of CNN-LSTM model are shown in Table 1. This table provides the 
information on number of filters used, kernel width, stride window and the number of parameters for 
each layer [72-85]. 

 

The complexity of CNN-LSTM can be calculated by calculating the time complexities of the 
convolutional lay- ers and the LSTM layer individually. The complexity of CNN layer is estimated as 
O( dl=1 nl−1.s2l .nl.q2l ), where d, nl−1, sl and ql are the number of convolutional layers, number of 
filters in lth layer, spatial size of filter and spatial size of output feature map respectively [48]. The 
complexity of the convolution layer grows quadratic ally with kernel width, number of kernels and 
cache unfriendly memory access [49]. Whereas, input length does not affect storage requirements of 
LSTM network, local in space and time [50]. Thus, the overall complexity of LSTM network is O(ω), 
where ω corresponds to number of weights. Therefore, overall complexity of CNN-LSTM network is 
the sum of complexities of CNN and LSTM layers and can be expressed as: O ( 
dl=1(nl−1.s2l.nl.q2l)+ω).i.e ,where I is the length of input and e is the number of epochs [31-49].  

 

4.0 RESULT 
 
Thin-walled structures are produced with aluminum alloy 4043/AA4043 wire with diameter of 2 mm 
and melting temperature is in range of 573◦ C and 632◦ C. The material is deposited on aluminum alloy 
6061/AA6061 substrates. Nominal chemical compositions of AA6061 and AA4043 used in this study 
are shown in Table 1. Thin-walled structures were produced using a CMT 7000 VR power source. Fig. 
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3 illustrates the schematic of directed energy deposition platform used in this study. The wire feedstock 
was thoroughly cleaned and dried before experimentation. The substrate was firmly clamped onto the 
workbench and movement of welding torch in X and Y directions was controlled by a linear actuation 
system. The wire is deposited in single pass layers along the Z direction and the alternating layers are 
deposited in the opposite direction. A total of nine samples were produced by varying current and 
speed levels in order to collect the temperature data. Other parameters were maintained constant Table 
2 shows the process parametric levels used in this study. Each parameter has three levels and a sample 
of thin-walled structure has ten layers in total. The length, height and width of each sample are 80 ± 2 
mm, 30 ± 2 mm and 3 ± 0.5 mm respectively. 

 

where xi and x ̄i are the actual and forecasted values of melt pool temperature ranging from i = 1,2, 
3,...,N. The performance metrics of various statistical, machine learning and deep learning models are 
summarized. The performance measures of proposed CNN-LSTM algorithm for all the experiments are 
provided The metrics for experiments with various process parameters remains almost same. This 
shows the model’s good repeatability characteristics for forecasting melt pool temperature in wire arc 
additive manufacturing process. Research shows the comparative plots of forecasted melt pool 
temperature values with actual values. All the forecasts are made for the roof layer (layer 10). The 
model exhibits robustness against noises. The average RMSE, MAE and MAPE of proposed CNN-
LSTM model for sample 1 are 95.16, 75.43 and 12.19% respectively. 

 

 

5.0 CONCLUSIONS 
 
The proposed CNN-LSTM network for forecasting melt pool temperature during additive 
manufacturing process is found to be an effective and competitive technique for online monitoring of 
process. The existing methods for online monitoring mostly used defect detection techniques such as x-
ray, computed tomography measurements that are mapped with temperature profile to adjust process 
parameters. However, temperature profile itself provides an abundant information regarding the quality 
of products. Thus, forecasting temperature profile for each layer during additive manufacturing process 
is most feasible, by subsequently controlling the process parametric deviations, particularly with higher 
efficiency and faster response times. Melt pool temperature profile is dynamic and complex in nature. 
Thus, utilizing stand-alone traditional statistical or machine learning or deep learning models may not 
be effective. We have improved the forecasting performance by linearly combining CNN and LSTM 
networks to address the non-linearity from both spatial and sequential point of view. Time series 
analysis and forecasting is becoming an important research topic in recent years due to the availability 
of large amounts of data and high computational power. The present study demonstrated the 
application of CNN-LSTM model for layer-wise melt pool temperature forecasting during WAAM 
process. The melt pool temperature of the roof layer (layer 10) is forecasted by training the network 
with the previous layer’s (from layer 1 to layer 9) temperature data. The performance of proposed 
CNN-LSTM model for all the experiments was evaluated using RMSE, MAE and MAPE. Further, 
results of proposed model were compared with the traditional benchmark time series models. The 
major conclusions drawn from this study are the following. The performance metrics of CNN-LSTM 
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model for melt pool temperature forecasting followed a similar pattern for all the experiments, that 
shows the good repeatability of the proposed model. The comparative results with traditional models 
such as ETS, ARIMA, LR, SVM and RF have shown that the proposed model is capable of fore-
casting temperature with high accuracy. The RMSE value of the proposed model is decreased by 
28.5%, 12%, 29.6%, 35.81%, 22.8% and 21.94% over MLP, CNN, GRU, LSTM, Bi-LSTM and 
Attention-LSTM models respectively. The right selection of hyper parameters of deep learning models 
is a major limitation for their general applicability. This usually follows a trial-and-error approach. In 
future work, inner structure of CNN-LSTM can be extensively studied for further improvement of the 
model’s performance. 
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