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ABSTRACT 
Supervised Machine Learning (ML) models require extensive training data to properly approximate the 
behavior of complex mechanical processes and systems. Real-world experiments or adequate 
simulations are expensive, time-consuming or incident-related and make the efficient acquisition of 
sample data a compelling necessity. In mechanical engineering and manufacturing, data is usually 
collected via established Design of Experiments (DOE) methods. At the same time, the topic of Active 
Learning (AL) is gaining in importance in the research community and promises a reduction in the 
amount of data, but is rarely used in industry. In this paper, we compare the most common data 
sampling methods with AL to achieve better predictive results with fewer samples on regression tasks. 
We propose a novel evaluation framework that allows to compare various sampling methods in a 
controlled and unbiased manner, regardless of their different requirements. Using three exemplary use 
cases (UCs), we evaluate when one should use AL or DOE methods for the task of data generation, by 
looking at the sample efficiency, stability and predictive accuracy of the resulting ML models. This 
paper provides practical guidance to both engineers and data scientists, who required highly efficient 
data collection for later use of ML.  

KEYWORDS: additive manufacturing, machine learning, design of experiments, data generation 

1.0 INTRODUCTION 
Training and deploying ML (Machine Learning) models have become considerably easy because of the 
available open source frameworks. This results in active usage of advanced ML algorithms across 
various domains. One of remaining substantial entry barriers to the world of ML remains the data 
availability. Domain-specific data sets can be extremely difficult to find. Many leading companies such 
as Google and Facebook concentrate on collecting and monetizing the data [1-5]. The field of 
mechanical engineering and manufacturing is not an exception, companies strive to improve their 
product design and manufacturing processes to gain a competitive edge through utilization of available 
data and advanced analytics tools. Already available ML solutions cover a wide range of real-world 
applications such as approximating complex systems, speeding up and enhancing simulations 
topology-optimization and energy management [6-11]. Yet addressing a certain problem often requires 
the acquisition of training data first, which means running numerous time- and cost-extensive trials on 
real equipment or simulated environments. Besides, a large quantity of data does not necessarily 
guarantee the success of the given project, since the data must be available in a certain quality and 
variability. As it is hard to predict the outcome, related costs and required capacities of a real-world 
experiment, the acceptance level among manufacturing companies remains limited [12-17]. All of this 
turns the implementation of ML solutions in the context of complex production systems and processes 
into a challenging task. It is important to choose an optimal data generation strategy specifically 
suitable for the intended ML solution to ensure the success of the whole project. For a certain UC (Use 
Case), it can be challenging to make a well-founded decision upon how to generate required data. Since 
most AL (Active Learning) studies take random sampling as performance baseline it stays unclear if 
and how much of the performance gain can AL offer over a traditional well planned DOE [18-24]. To 
our best knowledge, there is no study available comparing directly DOE methods with AL within a 
context of mechanical engineering and manufacturing. In this paper, we address these research gap by 
directly comparing the random generation of data, Latin Hypercube Sampling (LHS), which is a 
common DOE method, and Query-by-Committee (QBC) sampling from the area of AL. To do so we, 
develop a novel evaluation framework allowing for direct comparison of DOE and AL methods in a 
controlled and bias-free manner [25-33]. We ensure the relevancy of the results specifically for 
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mechanical engineering and manufacturing tasks by using appropriate UCs of different complexity. 
The suitability of all data generation approaches is evaluated in terms of sample efficiency, stability of 
results and achieved prediction accuracy of ML models trained on the generated data [34-41]. The 
evaluation is conducted with the help of LGBM (Light Gradient Boosting Machine), based on 
regression trees, and a method to boost the prediction performance by combining several ML models 
called bagging. Both algorithms are known and widely-used in ML applications across different 
domains. The results serve as a practical guide for engineers and data scientists, when selecting data 
generation strategies for ML projects in the mechanical engineering and production [42-49].  

 
2.0 BACKGROUND 

This section summarizes and reviews state of the art data generation approaches and AL methods as a 
subarea of ML.  

A. Data Generation Approaches  

 
Leveraging supervised ML models for predicting complex systems requires large amounts of samples 
with sufficient variance. Generating a labeled sample requires execution and observation of a real 
process or a realistic simulation [50-56]. Research in the area of DOE proposes several methods for 
choosing samples to be labeled, which are widely used due to their simplicity or versatility, and 
described in the following:  

1) Completely randomized designs: Completely randomized designs assign a value for each feature 
randomly. It is a basic technique and was presented in 1964. Small numbers of samples are not 
necessarily well-spread, but random sampling achieves good performance for large sample counts. 
Figure 1 depicts example distributions for random sampling, which is easy to implement and is used as 
one performance baseline for our evaluation [57-63].  

2) Randomized block designs: Randomized block designs are an extension of completely randomized 
designs. The basic concept is to separate the value space of each feature into homogeneous blocks and 
randomly sample within these blocks. The chosen samples are distributed uniformly among the defined 
blocks, which leads to a random-ordered uniform distribution with additional noise [64-71]. A widely-
used approach is the Latin Hypercube Sampling (LHS), which combines random sampling’s scalability 
with the homogeneous space- filling of classical designs. Figure 1 depicts example distributions for 
LHS. If we consider a k-dimensional experimental region D and split every dimension into n uniform 
blocks, LHS created n cubes of equal probability [72-76].  

 

3) Full factorial designs: Full factorial designs are com- mon sampling designs where all features are 
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set to a fixed number of l levels each. Popular choices, in engineering at least, are two-level designs (l 
= 2), where each feature can either take its high or low value. A full factorial design creates all possible 
combinations of the available values for each of the k features. For n features with l levels each, this 
leads to l experiment runs. Note that even for seven features with three levels only (low, mid and high), 
full factorial designs create 2187 samples. The exponential growth makes experiments with more 
features not suitable, especially at high costs per experiments [77-81].  

4) Fractional factorial designs: A fractional factorial de- sign is defined as a “factorial experiment in 
which only an adequately chosen fraction of the treatment combinations required for the complete 
factorial experiment is selected to be run”. The experiment runs generated by a full factorial design are 
reduced by only taking a fraction of these [1-7]. The success of the considered method is dependent on 
the decision of what parts of the experiment to keep. Basic approaches pick fractions such as, etc. and 
typically achieve good results 24 when the chosen experiment runs are both orthogonal and balanced. 
For the above full factorial example with n features with l levels each, a fractional design reduces the 
number of runs by the chosen denominator d to 1 

∗ 1*n [8-13].  

5) Response surface designs: According to projects, classical designs like Box-Behnken Design (BBD) 
[18] and Central Composite Design (CCD) are mainly used for physical experiments, as they select a 
well spread and small number of samples from the feature space. Figure 2 depicts a sample selection of 
BBD and CCD for three features. As described in, the number of samples in these classical designs is 
fixed and directly depends on the number n of features included in the experiment. Given three (n = 3) 
dimensions, BBD creates 13 samples arranged in a sphere. Except for the centre point, all samples are 
situated on the edges of the experimental region. CCD create 15 samples for n = 3, which are aligned 
as a group of “star points” around one center point (cf. Figure 2) [14-19].  

 

B. Active Learning 

 
AL algorithms belong to a sub-field of ML and use in cremental query learning that consists of two 
components: A query algorithm and a training algorithm, typically an ML model. The main hypothesis 
is that the training algorithm can learn more with fewer samples, if it can select the samples itself via 
the query algorithm. Figure 3 depicts a typical AL loop, where the main goal is the optimal training of 
an ML model with as few samples as possible. The AL algorithm selects one or more samples (step 
size) from the unlabeled train set U and an oracle returns the respective label for training the ML 
model(s) further. For n features, the feature space X is the set of all possible feature values 
combinations: X = {(⃗x) | ⃗x is a valid feature combination}. Note that X is continuous and thus can 
contain an infinite amount of entries. P ⊂ X is a finite subset that we also call pool in the AL context. 
Further, the labeled train set L is the subset of P where labels are known:L={p∈P| 
labelofpisknown}Theunlabeled train set U respectively is defined as U = P \ L. The oracle shown in 
Figure 3 can be a human annotator [20], a real-world process or a simulation (e.g., of a produc- tion 
process). The main difference from the statistical DOE described in Section II-A is that an AL method 
extends its train set actively [20-28]. Every next sample included in the train set is expected to 
maximize the learning effect. This strategy selects that instance from U where the underlying ML 
model is least certain regarding the prediction. Numerous query algorithms are available, the two most 
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commonly used and well-known approaches are uncertainty sampling and Query- By-Committee 
(QBC) [21]. We do not include uncertainty sampling in our work, because it is only applicable when a 
probabilistic ML model is used. The QBC method was introduced in and contains a committee C = {θ1 
, ..., θC } that is trained on the labeled data set L. The next sample is chosen based on the principle of 
maximal disagreement. All committee members θi ∈ C predict a label for every available x ∈ U, and 
the sample with the highest disagreement in predicted labels is selected. This approach requires the 
committee members θi to have different hypotheses, as explained in Figure 4 [29-34]. QBC focuses on 
controversial regions in the unlabeled train set U, queries that sample x ∈ U with the largest 
disagreement, and improves all members of the committee C by including x while re-fitting these. 
QBC is reported to lead to consistently good results compared to other approaches [23]. Moreover, 
QBC is one of the best- documented and implemented AL algorithms as of today with several Python 
implementations [35-41].  

 

3.0 RELATED WORK 

A. DOE Applications in Machine Learning  

DOE can facilitate the application of many computationally- expensive algorithms. A big portion of the 
research is dedicated to the use of DOE for algorithm-tuning. Caserta and Voss adopt Response 
Surface Methodology (RSM) to fine-tune a proposed Corridor Method algorithm on an example of a 
block relocation task in container terminal logistics. Factorial Experimental Design combined with a 
local search algorithm can be successfully used for finding parameter values for algorithms whose 
performance depends on using non-obvious combinations of values. Response Surface Experimental 
Design was used in to demonstrate the DOE suitability for tuning of optimization algorithms on an ant 
colony system for the travelling salesman problem example. Several studies show that DOE usage in 
the parameter-tuning process of ML Algorithms can lead to good results with reasonable computational 
costs [1-17].  

DOE proves to be a suitable vehicle to address various challenges in ML applications from feature 
selection for predictive model training to behavior investigations of neuronal networks in the context of 
reinforcement learning. Subsequently, DOE is a well-tailored tool for the generation of training data 
while creating ML models [18-27].  
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B. Data Generation in Machine Learning  

There are several different approaches to generate data for training of ML Models. Often data is 
generated using simple random sampling. For instance, Moiz et al. use random sampling methods to 
generate data for a behavior approximation of heavy-duty engine simulation with ML model. However, 
it is widely assumed that DOE and active learning approaches may allow for better performance with 
less training data required for real-life ML applications [28-36].  

Such Pfrommer et al. assume a possible reduction of required training data with the help of DOE 
approaches to train deep neuronal networks for the optimization of composite textile draping process. 
Probst et al. use optimal Latin hypercube DOE to map input-output parameters of a complex 
computational fluid dynamics (CFD) simulation and train predictive models on it. To conclude, 
currently there are various ways to proceed with data generation for subsequent ML model training 
with little practical guidance on what method to chose under which conditions [37-43].  

4.0 DEVELOPING AN EVALUATION FRAMEWORK 

The overall goal of our experiments is to compare AL with two classical DOE methods, namely 
random sampling and LHS. An AL method can only be considered as production- ready, if it 
consistently outperforms well-designed DOE methods without prior tuning and trial runs [44-49].  

TABLE I: Data requirements of the compared data generation strategies and solutions proposed in our evaluation framework. 

 

A. Input Data Requirements  

Table I summarizes the data requirements of random sampling, LHS and QBC. Because real-world 
data set do not meet these requirements for random sampling or LHS, we develop an evaluation 
framework that includes solutions to this. This framework also provides a proper data basis for QBC 
and is described in the following [50-54].  

Random sampling, as well as LHS, choose samples directly from a continuous feature space, making it 
impossible to directly apply them to existing data sets. An oracle capable of online data labelling is 
required, covering not only the existing data points in a given data set, but continuously all possible 
samples in the range of that data set. Typically, a suitable simulation or real experiments can be used 
for this step. How- ever, simulations with adequate complexity and performance are rarely available 
out-of-the-box and using a real machine drastically limit the validation speed and excessively increases 
the efforts and costs [55-61].  

To overcome this challenge, we fit a ground truth model (GTM) on the input real-world data set, which 
serves as an oracle later. A well trained GTM can approximate dependencies in the original data set 
and generalize it over continuous feature space within the observation limits used for training. This 
GTM not only reproduces labels for samples from the original data set, but also assigns a label to any 
sample in the complete continuous feature space of the original data, which enables the application of 
random sampling and LHS. This approach satisfies any sampling method that requires a continuous 
feature space [62-69].  

The third method, namely QBC, cannot be used with GTM directly, because it requires a finite pool of 
unlabeled samples to iterate over in order to select next training samples (cf. Section II-B). Potentially 
any method that samples from a discrete finite pool, can use the input data set used for GTM training to 
do so. We do not follow this approach, because it has the following drawbacks. First of all, splitting the 
data set into train and test sets significantly reduces the number of available train samples [70-76]. 
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Using the entire pool U for testing however distorts the result, because U shrinks over time and in the 
end only consists of those samples with the lowest information gain. Second, no assertions can be made 
about any input data set. It might (i) contain very unevenly distributed samples (bias), (ii) be too big 
and leaving the question of a meaningful subsampling open, or (iii) be complex and thus obscures the 
choice of a bootstrap train set. Third, while conducting experiments on a real physical system, often 
there is no to little prior data available. Knowledge how to initialize learning for AL methods in the 
most efficient way is a crucial part of AL use in real-world applications. Therefore, a robust validation 
schema for active learning should offer a high level of flexibility and control over the design of training 
and test data sets. Our validation approach avoids above-mentioned problems and allows for a flexible 
data collection [77-81].  

B. Incremental Evaluation  

Figure 5 outlines the comparison of data generation strategies. We divide it in four steps as explained 
below:  

1) GTM fitting: This step consists of training an ML model on a chosen input data set. This step 
requires certain data- science background and includes data preprocessing, hyperopia remoter 
optimization of the ML model, validation of prediction accuracy and storing the trained GTM for the 
subsequent use as an oracle [1-4].  

2) Data generation: Every iteration step from m = m + 1 is crucial, because choosing the sample with 
the highest information gain promises a better learning curve. Figure 6 illustrates how the different 
sampling methods extend their train set by selecting samples to be labeled. The input is a set of size m 
samples, which represents the so far known samples including their labels. The random method 
generates one random sample within predefined feature space X , statistically independent from any 
prior selections. This results in a set of m + 1 samples, which contains the prior m samples altogether 
with the newly selected one [5-9].  

LHS generates from the feature space X a set of a specified, which cannot be changed or extended 
later. Therefore, LHS in our experiments discards the given input of m samples and creates a fresh one 
of size m + 1 independently from the input. For real-world applications, this means that the iterative 
extension of an existing data set designed with LHS is not possible and the number of experiments to 
conduct must be known in advanced. Despite this fact, there are application cases in which the number 
of experiments are predefined by time or cost constraints, making it relevant for our study. In this case, 
random sampling, LHS and AL are considered as equally-viable options in the process since only the 
final performance is relevant. The choice of a LHS over other extendable data generation strategies is 
indeed justified if it delivers good performance for the predefined amount of experiments [10-16].  

The third method, namely AL, takes the input of m samples and selects the next sample from unlabeled 
set U for which its committee members disagree the most. We iterate over all still available unlabeled 
data u ∈ U and let each committee member θ ∈ C make a prediction for this u. The function s(θ1(u), 
θ2(u), ...) calculates the standard deviation of these predictions. That sample u with the highest 
standard deviation represents the largest disagreement of committee members and is selected. The 
result is a set of m+1 samples, which contains the prior m samples with one additional sample based on 
maximum disagreement [17-26].  

3) Train and validate ML models: One test set of appropriate size is created via LHS in order to cover 
the whole input feature space and reliably evaluate the performance of predictive models trained during 
the evaluation. The prediction models are trained on train data sets as sampled by random sampling, 
LHS and AL and labelled by the GTM. The influence of every increment in train set size is validated 
on the test set, which is the same for all compared sampling methods. This allows a direct comparison 
of random sampling, LHS and AL in terms of sample efficiency, stability and predictive accuracy of 
trained models [27-33].  
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Fig. 5: We fit a GTM on a data set and use it to label samples requested by QBC, random and LHS. These grow 
with an increasing m and yield a validation plot. The entire procedure can be repeated multiple times (cross-
validation) [67-73]. 

 

5. EXPERIMENTS 

This section builds on the evaluation framework we developed in the prior section, executes the 
motivated steps and discusses their results.  

A. Data sets for evaluation  

Two main factors are used to select validation UCs: from one side the evaluation framework requires a 
labeled data set for GTM fitting. On the other hand, this paper focuses various sampling techniques for 
regression tasks, while approximating complex systems and processes in the field of mechanical 
engineering. The selected UCs base on publicly available data sets about complex mechanical systems.  

1) Pumadyn family of data sets: data sets are generated by simulating the dynamic of a Puma 560 robot 
arm. Used simulation describes a robotic manipulator with a high degree of confidence. Pumadyn data 
sets have various level of complexity from linear to non-linear interaction with various levels of noise 
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in the measured signals. The data set allows to learn the dynamic model of the robotic arm and predict 
the angular acceleration of one of the robots arm links. Two data sets from the given family are used in 
this paper: Pumadn-8nm and Pumadn-32nm. Pumadyn-8nm includes 8 input features (angle positions 
of three links, angel velocities of three links, torque at first two joints) and one target variable (angle 
acceleration of joint 3). It consists of 8192 separate observations. Pumadyn-32nm offers 32 input 
features (angle positions of links 1 to 6, angel velocities of links 1 to 6, torques at joints 1 to 5, change 
in mass of links 1 to 5, change in length of links 1 to 5, change on viscous friction of links 1 to 5) with 
the same number of observations and angle acceleration of joint 6 as a target variable. Both data sets 
are highly non- linear and include a medium level of noise.  

2) Electric Motor Temperature data set: it offers 36475 separate sensor measurements from a 
permanent magnet syn- chronous motor generated on a test bench. The purpose of the collected data is 
to use ambient temperature, coolant temperature, motors voltage, current, speed and torque to predict 
the surface temperature of the permanent magnet.  

B. Machine Learning Models  

In this paper, we work with two popular ML gradient boost- ing based algorithms: Extreme Gradient 
Boosting (XGBoost) and LightGBM (LGBM). Gradient boosting is a powerful ML technique reaching 
state-of-the-art results across a variety of practical task while been sample-efficient and relatively easy 
to implement. Both XGBoost and LGBM are machine tree-based learning algorithms that belong to the 
class of gradient boosting. The gradient boosting method trains several combined learning models with 
the data set to compensate for the weaknesses of each individual learning model. These cannot usually 
achieve higher accuracy on their own, which is why they are called “weak” learning models. Each new 
learning model focuses on previously mispredicted target values. The final prediction is based on the 
predictions of several “weak” learning models. This can significantly increase accuracy. Additionally, 
we look at how bagging of several predictive models improves the overall performance for different 
sampling strategies. Bagging can improve the performance by running many times an existing 
regression algorithm on a set of re-sampled data and averaging the predictions. Bagging is a good 
method for boosting the performance of decision-tree based algorithms from one side and can offer 
certain advantages while working with QBC sampling methods making it a good addition to our 
experimental setup.  

C. Training and Validation of GTMs  

XGBoost models [46] are used for GTM because of the achieved high prediction accuracy across all 
three data sets. Model tuning for every data set is conducted with the help of TPOT library [47] which 
utilizes evolutionary algorithms to find near-optimal model’s settings within a user-defined range. 
Every model is validated with the ten-fold cross-validation (CV). During validation, the data set is 
shuffled and split into ten equal parts. Every part is used one time for validation of prediction accuracy 
against the real labels with the rest nine parts used for training. In total ten iterations referred to as CV 
folds are conducted. Prediction accuracy is evaluated using the explained variance score for every CV 
fold. Averaged explained variance score over all ten CV folds is taken as a final performance metric of 
a trained GTM. Tuned GTM trained on Pumadyn-8nm data set achieves explained variance score of 
95.6%. Its prediction accuracy is visualized in Figure 7a. The x-axis represents real values and y-axis 
contains predicted values for the same input parameters obtained by CV. Ideal prediction lies on a line 
angled 45 degrees towards both axes since it means an exact match of predicted and real values. 
Prediction accuracy of tuned GTM trained on Pumadyn-32nm data set is visualized in Figure 7b. It 
achieves explained variance score of 91.7%. Tuned GTM trained on Electric Motor Temperature data 
set demonstrates an explained variance score of 96.4% and is visualized in Figure 7c. Visualized 
prediction performances and high explained variance scores prove that dependencies in initial data sets 
are fairly well approximated with tuned GTMs. All three GTM Models are trained on full-sized data 
sets with many thousand observations. Next step is to investigate what data sampling strategies allow 
to learn dependencies in the data with ML in the most sample-efficient way.  
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D. Comparison of Data Generation Strategies  

We define important criteria for the comparison of data generation strategies as:  

• Prediction accuracy of ML models trained on the generated data – all evaluation cases are 
regression tasks. We choose explained variance (R2) score as a performance metric since it 
intuitively explains how well a given ML model describes underlying dependencies in the 
data (100% – absolute accuracy, 0% – no dependencies learned)   

• Sample efficiency – the rate of prediction accuracy in- crease with increasing train set size   

Stability of results – is repeatability of observed prediction accuracy for the given number of samples 
over many iterations. Stability of results is reversed to the standard deviation of observed prediction 
accuracy for the given train size derived over many iterations.  Random sampling, LHS and QBC 
techniques are compared on the three chosen UCs. An initial training data set L is generated with two 
data generation strategies: random sampling picks m random points within the valid feature space, LHS 
creates and experimental design of the same size. Those points are labeled by a GTM. Identical LGBM 
models are trained on both initial data sets. Performance of trained models is evaluated on a separate 
testing data set T of the size t. It incorporates LHS design and covers the same predefined feature space 
range. The same testing data set is used across all validation runs of considered UC in order to ensure 
precise and consistent evaluation of the prediction performance for all experiments. QBC sampling 
approach requires not only an initial train set but an unlabeled pool of data U of the size l, where new 
observations can be selected from. Both initial QBC train set L and pool set U are generated by means 
of LHS design. A committee consisting of three LGBM models is trained on bootstrapped parts of the 
training data. Subsequently, initial data sets are extended with additional k data points and the 
validation cycle is repeated again. Table II describes the validation setup for every validation UC.  

 

The main difference between experiments on different sampling techniques is the way new points are 
chosen. For random sampling corresponding training data set is repeatedly augmented with three 
randomly generated points within the defined feature space. It is important to note, that LHS excludes 
the possibility to subsequently refine an existing data set. For every required data size, a completely 
new train set is generated. It provides a solid baseline towards what prediction performance can be 
achieved with more sophisticated sampling methods, provided the training size is chosen and data is 
generated in one iteration only. In the case of QBC, a trained committee decides at each step which 
next observation points from the pool data set to label with GTM and include to the training data set. 
Apart from the training a LGBM model, we use a bagging predictive model consisting of three LGBM 
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models. A bagging predictive model can work particularly well while combined with a QBC sampling 
strategy based on a committee with equal compositions [45]. The experiment results are averaged over 
30 independent runs for every setup (GTMs for three predictive tasks, three sampling techniques and 
two predictive models) including iterations from initial train set size to the final training size.  

 

6. RESULTS 

The evaluation results for all three validation UCs and two ML models are presented in Figure 8. These 
visualizations allow to compare various sampling methods over three defined comparison criteria:  

• Points on represented learning curves depicted as solid lines stand for prediction accuracy.   

• Sample efficiency is steepness of a given learning curve.   

Stability of results can be evaluated through the standard deviation of observed accuracy values for the 
given number of training samples represented as the filled area  around the given learning curve.  For 
the Pumadyn-32nm validation UC (Figure 8a1 and Figure 8a2), random sampling has the highest 
deviation range between experimental runs for both single LGBM model and bagging model. QBC 
sampling approach performs equal to slightly better compared to both random sampling and LHS if a 
single LGBM model is trained. At the same time, the bagging model together with QBC noticeably 
surpasses all other data sampling approaches. It demonstrates a steeper improvement of prediction 
accuracy with growing train set size, has low deviations of prediction performance between validation 
runs and has a higher final explained variance score.  As a next step, the efficiency of three data 
sampling meth- ods is investigated on a Pumadyn-8nm UC.  

Looking at the Figure 8b1 and Figure 8b2 almost similar to the previous UC learning patterns can be 
seen. With a single LGBM model both QBC and LHS have an edge over random sampling in terms of 
result’s stability and prediction performance at small training sample sizes. Bigger QBC-sampled 
training data, however, leads to a small prediction performance decrease comparing to other sampling 
methods. Bagging model combined with QBC sampling strategy, on the contrary, outperforms all other 
methods with a significant margin.   The experiment on the Electric Motor Temperature data set leads 
to similar results. Related learning curves are visualized in Figure 8c1 and Figure 8c2. While with a 
single LGBM model QBC sampling can offer more consistent prediction performance over random 
sampling only, bagging model achieves faster and more stable learning with QBC.  



International Journal of Applied Science and Engineering Research     Volume 15, Issue 4 – 2023 

Copyright © The Author(s). Published by Scientific Academic Network Group. This work is licensed under the Creative Commons Attribution International License (CC BY). 

359	

 

 

7. CONCLUSION 

We considered the problem of AL readiness for real- world applications on an example of QBC 
sampling while designing data acquisition experiments in the field of mechanical engineering and 
manufacturing. We compared how QBC methods can help data-driven approximations of complex 
mechanical systems in comparison not only with the standard AL baseline - random sampling but as 
well with an established DOE method, namely LHS. This is particularly relevant for industrial 
applications since DOE is an industry-wide standard for planning and conducting data-collection 
experiments. This paper offers practical help for choosing data sampling strategies for particular 
experiments. We mentioned that using existing data sets for validation of new AL algorithms can lead 
to misleading results, because of potential bias introduced during the original data collection. 
Moreover, it does not allow conducting direct comparison to other sampling techniques such as DOE, 
which mostly place data points in the observation space by itself. We proposed a low-effort and 
sampling agnostic validation approach that is free of above- mentioned biases by introducing GTMs, 
which are trained on validation data sets. Three validation UCs were designed to investigate efficiency 
and result’s stability of random, LHS and QBC sampling methods. We showed that, with a high 
number of experiments, the final results for all three methods are comparable. It is justified to use 
simple random sampling if the experimental costs are very low. When the number of available 
experiments is limited, LHS or AL prove to be a better choice. LHS delivers good results in terms of 
prediction accuracy and stability for all considered prediction models and sample sizes. However, LHS 
requires defining the sample count a- priori, therefore the number of experiments to execute must be 
chosen at an early planning stage. QBC offers an incremental extension of the train set and proved to 
be the best choice if certain conditions are met. For single prediction models, QBC needs tuning and 
trial iterations in order to achieve good results, therefore making it not suitable for applications with 
high costs for data acquisition. If the ML models intended for use on the collected data are compatible 
with ensembling techniques like bagging, e.g. LGBM, QBC is the most efficient and stable data 
sampling method with no tuning required.  
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